Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata: implications of domain structure for its membrane pore-formation mechanism.
نویسندگان
چکیده
CEL-III is a Ca(2+)-dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CELIII by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 A resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt beta-trefoil folds such as the B-chain of ricin and are members of the (QXW)(3) motif family; and domain 3, which is a novel fold composed of two alpha-helices and one beta-sandwich. CEL-III is the first Ca(2+)-dependent lectin structure with two beta-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca(2+) ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca(2+) is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes.
منابع مشابه
Hemolytic lectin CEL-III heptamerizes via a large structural transition from α-helices to a β-barrel during the transmembrane pore formation process.
CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-binding domains (domains 1 and 2) and one oligomerization domain (domain 3). After binding to the cell surface carbohydrate chains through domains 1 and 2, domain 3 self-associates to form transmembrane pores, leading to cell lysis or death, which resembles other pore-for...
متن کاملChemical modification of the hemolytic lectin CEL-III by succinic anhydride: involvement of amino groups in the oligomerization process.
CEL-III is a Ca(2+)-dependent lectin from a marine invertebrate, Cucumaria echinata, which shows strong hemolytic activity toward human and rabbit erythrocytes. After binding to carbohydrate receptors, CEL-III oligomerizes in the erythrocyte membrane to form ion-permeable pores, leading to the colloid osmotic rupture of the cells. Since hemolysis was greatly increased in the alkaline pH, especi...
متن کاملEffects of Ca2+ on refolding of the recombinant hemolytic lectin CEL-III.
CEL-III is a hemolytic lectin isolated from Cucumaria echinata. Although recombinant CEL-III (rCEL-III) expressed in Escherichia coli showed very weak hemolytic activity compared with native protein, it was considerably enhanced by refolding in the presence of Ca(2+). This suggests that Ca(2+) supported correct folding of the carbohydrate-binding domains of rCEL-III, leading to effective bindin...
متن کاملTime resolved SAXS measurement of the oligomerization of CEL-III, a hemolytic lectin from sea cucumber
Introduction CEL-III is a Ca-dependent, Gal/GalNAc-specific lectin purified from sea cucumber Cucumaria echinata, which shows haemolytic activity, especially toward human and rabbit erythrocytes [1]. Hemolysis is caused by the colloid osmotic rupture of the erythrocyte membrane due to the formation of ion-permeable pores by CEL-III oligomer after it has bound to carbohydrate receptors on the ce...
متن کاملHemolytic C-Type Lectin CEL-III from Sea Cucumber Expressed in Transgenic Mosquitoes Impairs Malaria Parasite Development
The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 35 شماره
صفحات -
تاریخ انتشار 2004